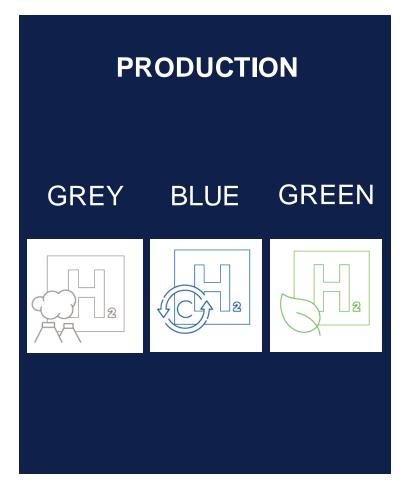
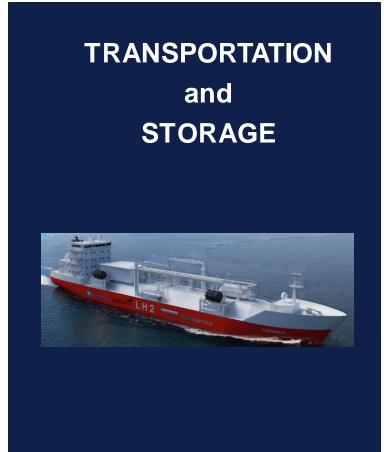

So why hydrogen?

decarbonization

- Shipping faces major challenges adjusting to zero emissions over the next decades
- Maritime will compete with other sectors to get access to the available and green fuels
- We will have a future with a huge degree of fuel mix – not a "one size fits all" solution
- Hydrogen is one of few zero-emission solutions with a promising potential for scalable use for the longer distances and larger energy needs in shipping



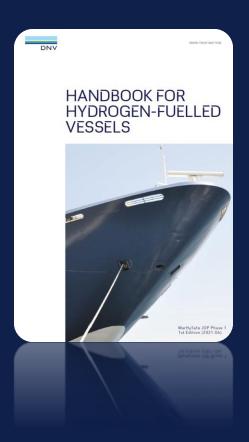

DNV is working as advisor to the entire hydrogen economy...

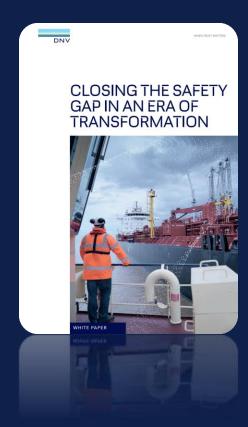
Hydrogen value chain for shipping

UTILIZATION

- Directly as fuel (liquid or compressed)
 - ICE
 - Fuel cell
- Building block in production of ammonia or other synthetic fuels

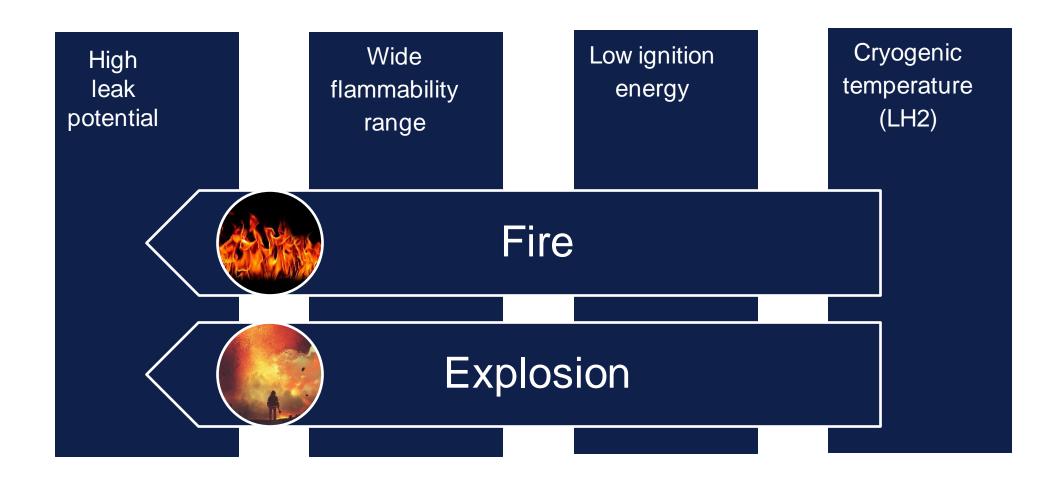
Compared to other fuels – hydrogen needs to overcome some challenges...


	Availability	Infrastructure & Storage	Maturity of technology	Energy density	Price	Green credentials
VLSFO/MGO						
LNG		\checkmark		\checkmark		
LPG		✓	✓	\checkmark		✓
Methanol	✓	✓			\checkmark	✓
Biofuels			✓			✓
Hydrogen	✓	✓	✓	•	✓	✓
Ammonia	✓	✓	♦	✓	✓	✓



Physical properties

- Main component in methane (H₂)
- Liquid at (-253°C) at 1 bar to (-240°C) at 13 bar
- Lighter than air
- Flammable, but high self ignition temperature: approx. 500°C (~ 210°C for diesel)
- Ignitable by sparks in mixture with air: 4-75%
- Requires 5 and 10-15 times the volume compared to the same energy stored in the form of HFO, for LH2 and CH2 respectively



Marinizing Hydrogen means further risks compared to the use on shore

- External hazards collisions, grounding etc.
- The risk frequency and consequence increases
- Confined and enclosed spaces
- Containerized swappable solutions
- Lack of H₂ experience in maritime
- Crew competence

The main Safety Challenges

The main safety challenges – and the mitigating designs...

Fire

Explosion

Segregation

Protect gas fuel installation from external events

Double barriers

Protect the ship against leakages

Leakage detection

Give warning and enable automatic safety actions

Automatic isolation of leakages

Reduce consequences of a leakage

DNV Rules

- DNV has had Rules for Fuel Cells since 2008. Relevant class notations are FC(Safety) and PC(Power)
- Rules for Hydrogen as fuel are currently in the making

IMO

- **IGF Code** Part A (2.3) Alternative design approach for ships using low flashpoint fuels
- SOLAS Ch. II-1 Regulation 55 provides a methodology for alternative design and refers to "Guidelines for the approval of alternatives and equivalents as provided for in various IMO Instruments" MSC.1/Circ.1455

DNV are involved in several projects...

Damen SY - NB ongoing

Source: CMB.Tech

HySeas III - AiP

Source: HySeas III

Salmar – NB ongoing

Source: Moen shipyard

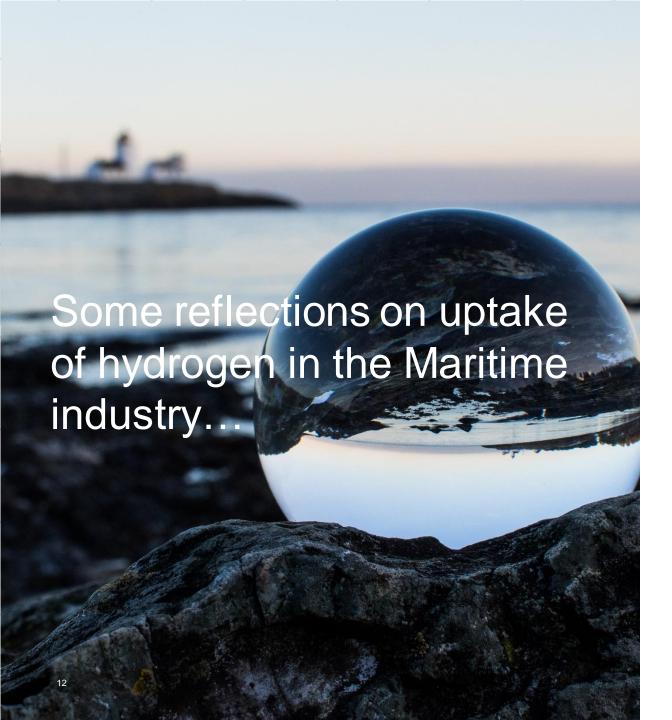
Compressed hydrogen

Zero Coaster - JIP

Source: Vard

Sealink Group - AiP

Source: Sealink



HYDRA – delivered

Source: Norled

Liquified hydrogen

The business case

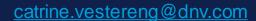
- Green and affordable production of H₂ is key for any uptake
- Infrastructure have to be in place

The application

- Short sea and small vessels will be the first (only?) adopters for CH₂ and LH₂
- Hydrogen will likely be used to process Ammonia and as synthetic fuels
- H₂ released from LOHC onboard for use as fuel

The technology

 Industry cooperation and knowledge sharing through pilot projects is essential to ensure development of safe solutions for the use of hydrogen


The regulatory framework

 Process and storage safety rules and framework needs to be in place

WHEN TRUST MATTERS

Thank you for listening!

Catrine Vestereng – SVP & Global Segment Director for Tankers

+47 970 67 390

www.dnv.com

